

## 2 Distributions

**Exercise 2.1.** Let  $\Omega \subseteq \mathbb{R}^d$  be an open set and let  $\{K_n\}_{n \in \mathbb{N}} \subset \Omega$  be a sequence of compact sets for which the following holds

$$K_n \subseteq \text{int}(K_{n+1}) \quad \forall n \in \mathbb{N} \quad \text{and} \quad \bigcup_{n \in \mathbb{N}} K_n = \Omega,$$

and  $K_0 = \emptyset$ . For all  $m \in \mathbb{N}$  and  $n \in \mathbb{N}$ , denote by  $\|\cdot\|_{m,n} : \mathcal{D}(\Omega) \rightarrow \mathbb{R}$  the function

$$\|\varphi\|_{m,n} = \sup_{|\alpha| \leq m} \|D^\alpha \varphi\|_{L^\infty(\Omega \setminus K_n)}$$

Show that  $\|\cdot\|_{m,n}$  is a semi-norm on  $\mathcal{D}(\Omega)$ .

**Exercise 2.2.** Let  $\Omega \subseteq \mathbb{R}^d$  be an open set,  $\varphi \in \mathcal{D}(\Omega)$  be a function and  $\varepsilon = \{\varepsilon_n\}_{n \in \mathbb{N}} \subset (0, \infty)$ ,  $\mathbf{m} = \{m_n\}_{n \in \mathbb{N}} \subset \mathbb{N}$ . Show that the following collection of sets

$$\mathcal{D}_{\varphi, \varepsilon, \mathbf{m}} = \mathcal{D}(\Omega) \cap \left\{ \psi : \|\psi - \varphi\|_{\varepsilon, \mathbf{m}} = \sup_{n \in \mathbb{N}} \left( \frac{1}{\varepsilon_n} \sup_{|\alpha| \leq m_n} \|D^\alpha \psi - D^\alpha \varphi\|_{L^\infty(\Omega \setminus K_n)} \right) \leq 1 \right\}$$

for different choices of  $\varphi, \varepsilon, \mathbf{m}$ , is a basis generating a topology on  $\mathcal{D}(\Omega)$ .

**Exercise 2.3.** Show that the topology introduced in Exercise 2.2 induces the following notion of convergence in  $\mathcal{D}(\Omega)$ .

*A sequence  $\{\varphi_n\}_{n \in \mathbb{N}} \subset \mathcal{D}(\Omega)$  converges to  $\varphi \in \mathcal{D}(\Omega)$  if and only if there exists a compact set  $K \subset \Omega$  such that  $\text{spt } \varphi_n \subseteq K$  for all  $n \in \mathbb{N}$  and all  $\varphi_n$  and their derivatives of any order converge uniformly to  $\varphi$  and its respective derivative.*

**Exercise 2.4.** We recall the notation  $\mathcal{D}(\Omega) = C_c^\infty(\Omega)$  and  $\mathcal{E}(\Omega) = C^\infty(\Omega)$  and the notion of convergence

$$\varphi_n \xrightarrow[n \rightarrow \infty]{} \varphi \text{ in } \mathcal{E}(\Omega) \iff \begin{aligned} &\forall K \subset \Omega \text{ compact}, \forall \alpha \in \mathbb{N}^d, \text{ we have} \\ &\|D^\alpha \varphi_n - D^\alpha \varphi\|_{L^\infty(K)} \rightarrow 0. \end{aligned}$$

Let  $T$  be a distribution in  $\mathcal{D}'(\Omega)$  that does not have compact support. Show that it is possible to find a sequence  $\{\varphi_n\}_{n \in \mathbb{N}} \subset \mathcal{D}(\Omega)$  and some  $\varphi \in \mathcal{E}(\Omega)$  such that  $\varphi_n \rightarrow \varphi$  in the sense of  $\mathcal{E}(\Omega)$  but  $T(\varphi_n) \xrightarrow[n \rightarrow \infty]{} \infty$ .

**Exercise 2.5.** Compute the following distributions

$$\frac{d^2}{dt^2} [(H(t) - H(t-2))(t^2 - t - 2)] \quad \text{and} \quad \frac{1 - \cos(2\pi t)}{t} \sum_{k \in \mathbb{Z}} \delta'(t - k).$$